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Abstract
Efforts to develop effective disease-modifying treatments for 
Alzheimer’s disease (AD) have mostly targeted the amyloid 
β (Aβ) protein; however, there has recently been increased 
interest in other targets including phosphorylated tau and 
other forms of tau. Aggregated tau appears to spread in a 
characteristic pattern throughout the brain and is thought 
to drive neurodegeneration. Both neuropathological and 
imaging studies indicate that tau first appears in the entorhinal 
cortex and then spreads to the neocortex. Anti-tau therapies 
currently in Phase 1 or 2 trials include passive and active 
immunotherapies designed to prevent aggregation, seeding, 
and spreading, as well as small molecules that modulate tau 
metabolism and function. EU/US/CTAD Task Force members 
support advancing the development of anti-tau therapies, which 
will require novel imaging agents and biomarkers, a deeper 
understanding of tau biology and the dynamic interaction of 
tau and Aβ protein, and development of multiple targets and 
candidate agents addressing the tauopathy of AD. Incorporating 
tau biomarkers in AD clinical trials will provide additional 
knowledge about the potential to treat AD by targeting tau.

Key words: Alzheimer’s disease, tau, tauopathy, therapeutics, 
biomarkers.

Introduction

No new drugs have been approved by the US 
Food and Drug Administration (FDA) for the 
treatment of Alzheimer’s disease (AD) since 

2003 (1) despite the fact that an estimated 5.7 million 
Americans and 50 million people worldwide have AD 
today, and the prevalence is expected to grow to 152 
million worldwide by 2050 (2, 3).  AD clinical trials have 
failed at a very high rate: between 2002 and 2012, 99.6% of 
AD drugs tested failed to demonstrate clinical efficacy (1). 
Possible reasons for the high failure rate include targeting 
the wrong pathology or the wrong stage of disease (4, 5). 
Inappropriately designed trials and other methodological 
or unknown factors may have also contributed to 
treatment failures (6).     

Despite the disappointments of the past 20 years, 
many experts in the Alzheimer’s community see reasons 
for optimism, including the emergence of novel drugs 
addressing a broader array of mechanisms than in the 
past (7). A recent report on the status of the AD drug 
development pipeline identified 112 agents: 26 in Phase 
3 studies, 75 in Phase 2 studies, and 23 in Phase 1 studies 
(8). Moreover, whereas most of the negative studies in 
recent years targeted brain amyloidosis and amyloid β 
(Aβ), current studies are targeting a broader repertoire of 
mechanisms, including tau pathology. Of the 26 agents 
in Phase 3, only one targets tau, while 9 of the agents 
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in Phase 2 (5 immunotherapies and 4 anti-aggregation 
agents) target tau (8).

Biology of tau and anti-tau therapeutics

T h e  m i c r o t u b u l e - a s s o c i a t e d  p r o t e i n  t a u , 
commonly referred to simply as tau, is found in a 
hyperphosphorylated form as insoluble, filamentous 
tangles and neuropil threads as well as dystrophic 
neurites in the AD brain (9). Along with plaques made 
up of aggregated Aβ protein, neurofibrillary tangles 
(NFTs) represent one of the hallmark pathologies 
of AD. Like Aβ, tau is found in several forms in the 
brain including monomers, oligomers, and fibrillary 
tangles (10).  Tau pathology also plays a central role in 
other neurodegenerative diseases known collectively 
as tauopathies, including the primary tauopathies 
frontotemporal lobar degeneration with tau inclusions 
(FTLD-tau), Pick’s disease, progressive supranuclear 
palsy (PSP),  corticobasal  degeneration (CBD), 
argyrophilic grain disease (AGD), and chronic traumatic 
encephalopathy (CTE) (11).  

Six isoforms of tau exist; it binds to several other 
proteins; and it undergoes many post-translational 
modifications, all of which contribute to its multiple 
functions in the brain. Tau protein plays important 
roles in cytoskeletal stability, cell signaling, synaptic 
plasticity, and neurogenesis (12, 13). In the AD brain, 
NFTs and neuropil threads composed of aggregated 
hyperphosphorylated tau are thought to be the primary 
drivers of neurodegeneration, although the mechanisms 
underlying the pathogenic process and the exact 
relationships of tau to Aβ remain unclear. Evidence 
also strongly suggests that tau propagates or spreads 
between cells (14) and that neuroinflammation triggered 
by microglial activation and astrogliosis contributes to 
tau-associated pathogenesis. Microglia may contribute to 
tau spreading (15). While postmortem and tau positron 
emission tomography (PET) studies indicate that tau 
spreading is associated with disease progression (16, 
17), there are many unanswered questions regarding 
the rate of seeding or the effects of tau spreading on 
neuronal biology. If the spread of tau is driving clinical 
and cognitive changes, this would support intervening at 
the earliest stages of the tau-related disease process. 

Neuropathological and imaging studies using PET 
suggest that tau aggregates are found in the entorhinal 
cortex and then the neocortex.  If and how this drives 
neurodegeneration, what forms of tau are toxic, and the 
relationship of tau to amyloid in terms of toxicity remain 
unanswered questions. Tau pathology correlates much 
more closely to cognitive decline than does amyloid 
pathology (18, 19), and a recent study suggests that tau 
aggregation is linked to neurodegeneration and clinical 
manifestations of AD (20). 

The complexity of tau biology provides many 
potential therapeutic targets to prevent tau production, 

aggregation, or spread at the level of transcription, 
phosphorylation, depolymerization, and transport. For 
example, preclinical studies indicate that antibodies 
against tau can prevent the trans-synaptic transmission 
of tau between neurons (21). A Phase 1 study of the 
humanized monoclonal antibody ABBV-8E12 showed 
acceptable safety and tolerability, which provided the 
basis for initiating a Phase 3 study in PSP patients to 
assess dose-related efficacy (22). The antibody is intended 
to prevent the trans-neuronal spread of the tau protein. 
Other monoclonal antibodies being assessed in early 
phase studies and targeting aspects of the tau protein 
include BIIB092, LY3303560, and RO7105705 (Table 1).  

Current status of anti-tau therapies in the AD 
treatment pipeline

One putative anti-tau agent, TRx0237 was studied in 
a Phase 3 trial and failed to show a difference between 
different doses.  Studies in mouse models suggested 
that the agent functioned as an aggregation inhibitor 
and reduced the number of tau positive neurons (23); no 
target engagement biomarker was included in trial to 
determine if this was achieved in humans (24). Subgroup 
analyses suggest that some patients may have benefited 
from therapy and further studies of this compound are 
underway (24). Table 1 summarizes the anti-tau agents 
that are currently being tested in Phase 1 or Phase 2 
clinical trials. These include both passive and active 
immunotherapies with monoclonal antibodies as well 
as drugs that affect the molecular structure of tau to 
modulate its function or prevent phosphorylation.  

Other anti-tau drugs are also in development 
for AD including epigallocatechin-3 gallate (EGCG), 
a polyphenolic flavanoid extracted from green tea 25, 
and AC Immune’s tau morphomers, small molecules 
designed to inhibit aggregation and seeding and 
disaggregate already formed tau aggregates. Preclinical 
studies suggest that tau morphomers reduce pathological 
tau, improve cognition and function, and reduce 
microglia activation. Importantly, they are capable of 
crossing the blood-brain barrier.

Outcome measures and biomarkers

Tau PET imaging

Tau and Aβ aggregates  in  the brain have 
been investigated in several cohort studies, both 
neuropathologically at autopsy and in living people 
using PET (26-28). The overall picture emerging 
from these studies is that among cognitively normal 
individuals, about one-third have high amyloid, and 
among those with high amyloid about half also have high 
tau loads. A minority of cognitively normal individuals 
have sub-threshold levels of amyloid and high tau. The 
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anatomic location of tau deposition may be important. 
These observations raise the possibility that quantifying 
progression of tau pathology may provide an early 
indicator of disease. 

Johnson and colleagues have investigated the 
anatomical variability of amyloid and tau deposition 
in more than 400 individuals. These data indicate that 
distribution of tau in the rhinal cortex correlates with 
amyloid burden and that low amyloid individuals just 
starting to show elevations in tau are those most likely 
to be on the way to neocortical tauopathy. By the time 
tau levels have increased in the inferior temporal cortex, 
individuals may show significant impairments. These 
data support the hypothesis that amyloid is associated 
with tau spread.

Longitudinal data also provide support for these 
measures as useful for staging in order to establish a basis 
on which to measure change in serial imaging that could 
be useful in the clinical and clinical trial settings. Four 
stages were proposed: 

Stage 0 – No signal exceeding background, consistent 
with Braak 0.

Stage 1 – Rhinal cortex signal emerging in a minority 
of low-amyloid clinically unimpaired individuals 
(allocortex, MTL) consistent with Braak I/II

Stage 2 – Inferior temporal signal emerging in the 
presence of high levels of fibrillar amyloid in clinically 
unimpaired individuals (corresponding to Braak stages 
III/VI)

Stage 3 – Additional neocortical binding in mild 
cognitive impairment (MCI) and AD patients (beyond 
inferior temporal; corresponding to Braak stages V/VI)

Figure 1 provides an example of images with high and 
low tau burden.

CSF and blood biomarkers of tau 

A systematic  review and meta-analysis  of 
cerebrospinal fluid (CSF) and blood biomarkers showed 

that CSF levels of total tau (T-tau), phosphorylated tau 
(p-tau), Aβ42, and neurofilament light (NfL), and plasma 
levels of T-tau were associated with AD and MCI due 
to AD but with quite pronounced, assay-dependent 
variation between studies, and no or only weak 
correlation with CSF T-tau levels (29-31). With regard 
to P-tau, a semi-sensitive assay for tau phosphorylated 
at threonine 181 (similar to the most employed CSF 
test) with electrochemiluminescence detection has 
been developed (32). Using this assay, plasma P-tau 
concentration was higher in AD dementia patients than 
controls. Plasma P-tau concentration was associated with 
both Aβ and tau PET and more AD-associated than the 
corresponding plasma T-tau test, which are promising 
results in need of replication. While conventional plasma 
measures of Aβ42 and Aβ40 by ELISA do not show 
a consistent change in clinically diagnosed AD cases 
as compared with cognitively unimpaired elderly (29), 
recent studies of blood Aβ using single molecule array 
(Simoa) or mass spectrometry have shown a relationship 
between blood levels of Aβ 40/42 ratios and the brain 
burden of Aβ (33-35). NfL indicates axonal damage and 
can also be measured in blood (36). Blood NfL shows 
particular promise as a biomarker of neurodegeneration 
in AD (37, 38) but high levels are also found in many 
other disorders characterized by neurodegeneration 
(39, 40). Given that NfL is a general neurodegeneration 
marker  and not  speci f ical ly  involved in AD 
pathophysiology, it may give more unbiased information 
than tau biomarkers in clinical trials. Furthermore, the 
correlation between CSF and blood levels of NfL is very 
high (36), which is not the case for blood measures of 
tau (30). Synaptic proteins, including dendritic protein 
neurogranin and the pre-synaptic growth-associated 
protein 43 (GAP-43), show marked increases in CSF 
and are seemingly specific for AD (41, 42). Emerging 
CSF biomarkers including neuron-specific enolase 
(NSE), visinin-like protein 1 (VLP-1), heart fatty acid 
binding protein (HFPAP), and YKL-40 (a marker of glial 
activation) show moderate associations with AD (29, 43).

CSF tau comprises many different tau fragments that 
reflect processing of secreted tau, and some of these 
fragments may prove to be useful diagnostically (44) 
or provide information about tau kinetics in neurons 
(45). New assays are being developed to measure 
additional endogenous tau fragments that may 
correlate with tau pathology. For example, one of these 
tau fragments, tau368, results from cleavage of tau by 
asparagine endopeptidase (AEP) at position 368. The 
result of this is tau hyperphosphorylation, impaired 
microtubule assembly, and aggregation of truncated 
tau in neurofibrillary tangles (46).  Inhibiting AEP 
may represent a novel therapeutic strategy for 
neurodegenerative disease (47).  Tau368 can be measured 
in CSF and a first small study shows an association with 
longitudinal increase in tau PET tracer retention (48). 
Further, mass spectrometry studies show that CSF tau is 

Figure 1.  Flortaucipir images with low (Braak I/II) and 
high (Braak III/VI) levels of tau.  The individual whose 
image is shown on the left had low amyloid levels; the 
one shown on the right had high amyloid levels (images 
courtesy of Keith Johnson)
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specifically cleaved to a mid-domain fragment between 
amino acids 222-225 (45). Using an assay based on an 
end-specific tau x-224 monoclonal antibody, increased 
CSF levels were found in AD, while tau224 levels were 
low in other tauopathies (49). Exosomal tau has been 
evaluated as a biomarker but the studies have not been 
replicated and it is presently not possible to draw any 
conclusion on whether or not exosomal tau is a biomarker 
for AD.

The varying measures of tau report on different aspects 
of AD biology. In the amyloid, tau, neurodegeneration 
(ATN) Framework for AD diagnosis (50), tau PET 
and CSF p-tau are viewed as reporters of the presence 
and spread of tau pathology, whereas CSF t-tau, 
fluorodeoxyglucose PET, and MRI atrophy are seen 
as reporters of neurodegeneration. Recent evidence 
suggests that the soluble forms of tau are increased in 
production with greater amyloid plaque burden (45), 
while aggregated forms of tau appear at later stages 
of AD pathophysiology, closer to symptom onset. Tau 
markers --- tau PET, p-tau, t-tau --- measure different 
aspects of AD from this perspective. 

For use in clinical trials of anti-tau agents, CSF 
biomarkers of amyloid and tau are needed to provide 
evidence of target engagement, enable enrichment 
of trials with appropriate participants, and show 
downstream effects of treatment (51). Lowering of CSF 
p-tau may suggest an effect on tau phosphorylation; 
however, more studies are needed to evaluate how CSF 
p-tau relates to brain pathology. Biomarker studies 
in recent clinical trials of the anti-amyloid antibodies 
bapineuzumab, gantenerumab, and BAN-2401 suggest 
that declines in CSF p-tau, t-tau, neurogranin and NfL 
indicate a downstream effect of Aβ immunotherapy 
on neurodegeneration, tau pathology, and synaptic 
degeneration (52-54).

Fully automated CSF immunoassays of AD biomarkers 
are now available, and in a study comparing fully 
automated CSF immunoassay with amyloid PET 
imaging, a multinational group of investigators found 
that the CSF tau/Aβ ratio was as accurate as amyloid PET 
in predicting clinical progression among patients with 
MCI (55) .  

Challenges and unanswered questions

While the development of tau-targeted therapies is 
seen by many in the AD research community as one of 
the highest priority efforts, the complexity of tau protein 
processing gives rise to many challenges that have 
slowed development of tau-based therapies (56). Among 
the questions raised by the Task Force were these:
• What is known about the normal physiological 

function of tau, and are there potential negative/
untoward consequences of reducing tau?

• What is the effect of tau suppression on spatiotemporal 
deposition of tau?

• What degree of tau lowering should be targeted to 
achieve an optimal therapeutic effect?

• What other factors may contribute to tau-based 
neurodegeneration (e.g., inflammation, aging, or 
vascular factors?)

• What is the relationship of amyloid-beta and tau?
• What is the relationship of soluble forms of tau and 

aggregated tau deposits?
• What is the role of microglia activation in the 

development of tau pathology?
• Since most tau is intracellular, will targeting it 

extracellularly be sufficient; or is there a window of 
time during which limiting extracellular tau would 
show a treatment benefit?

• What happens downstream when an antibody binds 
to tau? Is it sequestered or disposed of through cellular 
mechanisms or the glymphatic system 57 and does this 
result in downstream preservation of neurons?  

• What are the best tau epitopes or tau fragments to 
target? 

• Which tau fragments correlate best with AD-type 
neurodegeneration in CSF or in plasma?

• Which p-tau variants in CSF or blood correlate best 
with tau pathology in AD, or can differentiate AD from 
other tauopathies?

• Are there differential rates of change in tau deposition 
across the anatomy? 

• What regions should tau PET target to demonstrate 
target engagement, and how should tau PET be 
developed for use in clinical trials to predict treatment 
response or measure treatment effect?

• What will be required to make tau PET useful clinically 
for diagnosis, prognosis, or prediction of treatment 
response?

• Do trials for anti-tau agents require similar structures 
as for Aβ-targeting agents even though the dynamics 
of the protein are different?

• What is the best population, taking into account the 
ATN stage, to target?

• Should anti-tau clinical trials focus on subpopulations 
and if so, which subpopulations?

• Would the best path forward for anti-tau agents be 
to test them in combination trials with Aβ-targeting 
agents or drugs that target other pathologies such as 
neuroinflammation?

• How can tau-PET be used to stage AD?
• What are the best tau-related outcomes for AD trials?

Conclusions

Anti-tau therapies are beginning to populate the AD 
drug development pipeline, mostly in Phase 1 and Phase 
2 trials. However, anti-tau treatments have not yet shown 
evidence of a treatment effect in patients. The Task Force 
concluded that the development of anti-tau treatment 
will be determined by multiple trials and will require 
contributions from industry, academia, and advocacy 
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groups. 
The Task Force also called for incorporating CSF tau 

measures in all anti-tau trials. At a later date, tau PET 
may also be a viable option. For a biomarker to accurately 
assess target engagement and for pharmacodynamic 
studies, assays need to be designed specifically for the 
therapeutic antibody in addition to general tau-based 
assays. Such assays would enable exploration of whether 
a change in a specific tau species indicates that the 
therapeutic antibody binds tau in the brain parenchyma 
and if bound tau is secreted into the CSF. 

Most Task Force members agreed that anti-tau trials 
are justified because AD symptoms are likely driven by 
the spread of tau and its degenerative effects, as well as 
by amyloid. However, most members also agreed that the 
specific tau-based mechanisms that will likely provide 
a treatment effect from anti-tau therapy are unclear and 
that significant observational and trial related studies 
will help better inform which tau targets will be most 
effective.  
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